
F3_Doc_003_Ver4.0 Page 1 of 62

CODING STANDARDS
Microsoft Coding Standards for .NET

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 2 of 62

Table of Contents
TABLE OF CONTENTS.. 2

SCOPE ... 4

NAMING GUIDELINES ... 4

CAPITALIZATION STYLES ... 4
Pascal case.. 4
Camel case.. 4
Uppercase.. 4

CASE SENSITIVITY ... 5
ABBREVIATIONS ... 6
WORD CHOICE ... 6
AVOIDING TYPE NAME CONFUSION.. 6
NAMESPACE NAMING GUIDELINES ... 8
CLASS NAMING GUIDELINES .. 8
INTERFACE NAMING GUIDELINES ... 9
ATTRIBUTE NAMING GUIDELINES ... 10
ENUMERATION TYPE NAMING GUIDELINES.. 10
STATIC FIELD NAMING GUIDELINES .. 11
PARAMETER NAMING GUIDELINES.. 11
METHOD NAMING GUIDELINES ... 11
PROPERTY NAMING GUIDELINES .. 12
EVENT NAMING GUIDELINES .. 14

GUIDELINES FOR EXPOSING FUNCTIONALITY TO COM.............................. 16

ERROR RAISING AND HANDLING GUIDELINES ... 17

ARRAY USAGE GUIDELINES ... 17

ARRAYS VS. COLLECTIONS.. 17
USING INDEXED PROPERTIES IN COLLECTIONS .. 17
ARRAY VALUED PROPERTIES ... 17
RETURNING EMPTY ARRAYS .. 18

OPERATOR OVERLOADING USAGE GUIDELINES (C# ONLY) 18

GUIDELINES FOR IMPLEMENTING EQUALS AND THE EQUALITY OPERATOR (==).. 19
IMPLEMENTING THE EQUALITY OPERATOR (==) ON VALUE TYPES 19
IMPLEMENTING THE EQUALITY OPERATOR (==) ON REFERENCE TYPES................ 20

GUIDELINES FOR CASTING TYPES... 20

THREADING DESIGN GUIDELINES ... 21

GUIDELINES FOR ASYNCHRONOUS PROGRAMMING... 22

Confidential Focal3 Software Pvt Ltd

XML DOCUMENTATION ... 23

F3_Doc_003_Ver4.0 Page 3 of 62

EXAMPLE ... 23
DOCUMENTATION TAGS FOR OTHER .NET LANGUAGES ... 25
DESCRIBE THE ASSEMBLY INFORMATION IN THE FILE ASSEMBLYINFO.CS 25

CLASS MEMBER USAGE GUIDELINES ... 26

PROPERTY USAGE GUIDELINES... 26
PROPERTY STATE ISSUES .. 26
RAISING PROPERTY-CHANGED EVENTS ... 26
PROPERTIES VS. METHODS ... 30
READ-ONLY AND WRITE-ONLY PROPERTIES... 32
INDEXED PROPERTY USAGE .. 32
PARAMETER USAGE GUIDELINES .. 33
FIELD USAGE GUIDELINES .. 35
CONSTRUCTOR USAGE GUIDELINES... 39
METHOD USAGE GUIDELINES ... 42
METHOD OVERLOADING GUIDELINES .. 42
METHODS WITH VARIABLE NUMBERS OF ARGUMENTS .. 46
EVENT USAGE GUIDELINES... 47

TYPE USAGE GUIDELINES... 51

BASE CLASS USAGE GUIDELINES... 51
BASE CLASSES VS. INTERFACES... 51
INTERFACES ARE APPROPRIATE IN THE FOLLOWING SITUATIONS: 52
PROTECTED METHODS AND CONSTRUCTORS .. 52
SEALED CLASS USAGE GUIDELINES .. 53
DELEGATE USAGE GUIDELINES .. 54
EVENT NOTIFICATIONS .. 54
CALLBACK FUNCTIONS ... 54
VALUE TYPE USAGE GUIDELINES ... 55
STRUCT USAGE GUIDELINES .. 55
ENUM USAGE GUIDELINES .. 57
NESTED TYPE USAGE GUIDELINES... 59
ATTRIBUTE USAGE GUIDELINES ... 60

SETTING ENVIRONMENT OPTIONS (VB.NET) ... 62

REFERENCE:... 62

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 4 of 62

Scope

This document describes the coding and design guidelines for .NET developers.
Unless other wise stated explicitly, all the guidelines are common for all the .NET
complaint languages.

Naming Guidelines

Capitalization Styles

Use the following three conventions for capitalizing identifiers.

Pascal case

The first letter in the identifier and the first letter of each subsequent concatenated
word are capitalized. You can use Pascal case for identifiers of three or more
characters.

For example: BackColor

Camel case

The first letter of an identifier is lowercase and the first letter of each subsequent
concatenated word is capitalized. For example: backColor

Uppercase

All letters in the identifier are capitalized. Use this convention only for identifiers that
consist of two or fewer letters. For example:

System.IO

System.Web.UI

The following table summarizes the capitalization rules and provides examples for
the different types of identifiers.

Identifier Case Example
Class Pascal AppDomain

Enum type Pascal ErrorLevel

Enum values Pascal FatalError

Event Pascal ValueChangeEventHandler

Exception class Pascal WebException (Always ends with the suffix Exception.)

Read-only Static Pascal RedValue

Interface Pascal IDisposable (Always begins with the prefix I.)

Method Pascal ToString

Namespace Pascal System.Drawing

Parameter Camel typeName

Property Pascal BackColor

Protected instance Camel redValue (property is preferable to using a protected instance

Public instance field Pascal RedValue (property is preferable to using a public instance

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 5 of 62

Case Sensitivity

To avoid confusion and guarantee cross-language interoperation, follow these rules
regarding the use of case sensitivity:

• Do not use names that require case sensitivity. Components must be fully
usable from both case-sensitive and case-insensitive languages. Case-
insensitive languages cannot distinguish between two names within the same
context that differ only by case. Therefore, you must avoid this situation in
the components or classes that you create.

• Do not create two namespaces with names that differ only by case. For
example, a case insensitive language cannot distinguish between the
following two-namespace declarations.

namespace ee.cummings;

namespace Ee.Cummings;

• Do not create a function with parameter names that differ only by case. The
following example is incorrect.

void MyFunction (string a, string A)

• Do not create a namespace with type names that differ only by case. In the
following example, Point p and POINT p are inappropriate type names because
they differ only by case.

BreakFinder.Forms.Control.Text t

BreakFinder.Forms.Control.TEXT T

• Do not create a type with property names that differ only by case. In the
following example, int Color and int COLOR are inappropriate property names
because they differ only by case.

int Color {get, set}

int COLOR {get, set}

Confidential Focal3 Software Pvt Ltd

• Do not create a type with method names that differ only by case. In the
following example, calculate and Calculate are inappropriate method names
because they differ only by case.

void calculate ()

void Calculate()

F3_Doc_003_Ver4.0 Page 6 of 62

Abbreviations

Follow these rules regarding the use of abbreviations:

• Do not use abbreviations or contractions as parts of identifier names. For
example, use GetWindow instead of GetWin.

• Where appropriate, use well-known acronyms to replace lengthy phrase

names. For example, use UI for User Interface and OLAP for On-line Analytical
Processing.

• When using acronyms, use Pascal case or camel case for acronyms more than

two characters long. For example, use HtmlButton or HTMLButton. However,
you should capitalize acronyms that consist of only two characters, such as
System.IO instead of System.Io.

• Do not use abbreviations in identifiers or parameter names. If you must use

abbreviations, use camel case for abbreviations that consist of more than two
characters, even if this contradicts the standard abbreviation of the word.

Word Choice

Avoid using class names that duplicate commonly used .NET Framework
namespaces. For example, do not use any of the following names as a class name:
System, Collections, Forms, or UI. See the Class Library for a list of .NET
Framework namespaces.

Avoiding Type Name Confusion

Different programming languages use different terms to identify the fundamental
managed types. Class library designers must avoid using language-specific
terminology. Follow the rules described in this section to avoid type name confusion.

Use names that describe a type's meaning rather than names that describe the type.
In the rare case that a parameter has no semantic meaning beyond its type, use a
generic name. For example, a class that supports writing a variety of data types into
a stream might have the following methods.

[C#]
void Write (double value);
void Write (float value);
void Write (long value);
void Write (int value);
void Write (short value);

[VB.NET]
Sub Write(value As Double);
Sub Write(value As Single);
Sub Write(value As Long);
Sub Write(value As Integer);

Confidential Focal3 Software Pvt Ltd

Sub Write(value As Short);

F3_Doc_003_Ver4.0 Page 7 of 62

Do not create language-specific method names, as in the following example.

[C#]
void Write (double doubleValue);
void Write (float floatValue);
void Write (long longValue);
void Write (int intValue);
void Write (short shortValue);

[VB.NET]
Sub Write(doubleValue As Double);
Sub Write(singleValue As Single);
Sub Write(longValue As Long);
Sub Write(integerValue As Integer);
Sub Write(shortValue As Short);

In the extremely rare case that it is necessary to create a uniquely named method
for each fundamental data type, use a universal type name.

For example, a class that supports reading a variety of data types from a stream
might have the following methods.

[C#]
double ReadDouble ();
float ReadSingle ();
long ReadInt64 ();
int ReadInt32 ();
short ReadInt16 ();

[VB.NET]
ReadDouble()As Double
ReadSingle()As Single
ReadInt64()As Long
ReadInt32()As Integer
ReadInt16()As Short

The preceding example is preferable to the following language-specific alternative.

[C#]
double ReadDouble ();
float ReadFloat ();
long ReadLong ();
int ReadInt ();
short ReadShort ();

[VB.NET]
ReadDouble()As Double
ReadSingle()As Single
ReadLong()As Long
ReadInteger()As Integer
ReadShort()As Short

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 8 of 62

Namespace Naming Guidelines

The general rule for naming namespaces is to use the company name followed by
the technology name and optionally the feature and design as follows.

FOCAL3h.ModuleName [.Feature][.Design]

For example:

FOCAL3h.SAMPLE

FOCAL3h.SAMPLE.BreakFinder

Prefixing namespace names with a company name or other well-established brand
avoids the possibility of two published namespaces having the same name. For
example, Microsoft.Office is an appropriate prefix for the Office Automation Classes
provided by Microsoft.

Use a stable, recognized technology name at the second level of a hierarchical name.
Use organizational hierarchies as the basis for namespace hierarchies. Name a
namespace that contains types that provide design-time functionality for a base
namespace with the. Design suffix. For example, the System.Windows.Forms.Design
Namespace contains designers and related classes used to design
System.Windows.Forms based applications.

A nested namespace should have a dependency on types in the containing
namespace. For example, the classes in the SAMPLE.Web.UI.Design depend on the
classes in System.Web.UI. However, the classes in SAMPLE.Web.UI do not depend
on the classes in System.UI.Design.

Use Pascal case for namespaces, and separate logical components with periods, as in
Microsoft.Office.PowerPoint. If your brand employs nontraditional casing, follow the
casing defined by your brand, even if it deviates from the prescribed Pascal case. For
example, the namespaces NeXT.WebObjects and ee.cummings illustrate appropriate
deviations from the Pascal case rule.

Use plural namespace names if it is semantically appropriate. For example, use
System.Collections rather than System.Collection. Exceptions to this rule are brand
names and abbreviations. For example, use System.IO rather than System.IOs.

Do not use the same name for a namespace and a class. For example, do not
provide both a Debug namespace and a Debug class.

Class Naming Guidelines

The following rules outline the guidelines for naming classes:

• Use a noun or noun phrase to name a class.

Confidential Focal3 Software Pvt Ltd

• Use Pascal Case

F3_Doc_003_Ver4.0 Page 9 of 62

• Use abbreviations sparingly.

• Do not use a type prefix, such as C for class, on a class name. For example,

use the class name FileStream rather than CFileStream.

• Do not use the underscore character (_).

• Occasionally, it is necessary to provide a class name that begins with the
letter I, even though the class is not an interface. This is appropriate as long
as I is the first letter of an entire word that is a part of the class name. For
example, the class name IdentityStore is appropriate.

• Where appropriate, use a compound word to name a derived class. The

second part of the derived class's name should be the name of the base class.
For example, ApplicationException is an appropriate name for a class derived
from a class named Exception, because ApplicationException is a kind of Exception.

The following are examples of correctly named classes.

public class FileStream

public class Button

public class String

Interface Naming Guidelines

The following rules outline the naming guidelines for interfaces:

• Name interfaces with nouns or noun phrases, or adjectives that describe
behavior. For example, the interface name IComponent uses a descriptive
noun. The interface name ICustomAttributeProvider uses a noun phrase.
The name IPersistable uses an adjective.

• Use Pascal Case

• Use abbreviations sparingly.

• Prefix interface names with the letter I, to indicate that the type is an

interface.

• Use similar names when you define a class/interface pair where the class is a
standard implementation of the interface. The names should differ only by the
letter I prefix on the interface name.

• Do not use the underscore character (_).

Confidential Focal3 Software Pvt Ltd

The following are examples of correctly named interfaces.

F3_Doc_003_Ver4.0 Page 10 of 62

[C#]
public interface IServiceProvider
public interface Iformatable

[VB.NET]
Public Interface IServiceProvider
Public Interface IFormatable

The following code example illustrates how to define the interface IComponent and
its standard implementation, the class Component.

[C#]
public interface IComponent
{
 // Implementation code goes here.
}
public class Component: IComponent
{
 // Implementation code goes here.
}

[VB.NET]
Public Interface IComponent
 ' Implementation code goes here.
End Interface

Public Class Component
 Implements IComponent
 ' Implementation code goes here.
End Class

Attribute Naming Guidelines

You should always add the suffix Attribute to custom attribute classes. The following
is an example of a correctly named attribute class.

public class CMTSAttribute

Enumeration Type Naming Guidelines

The enumeration (Enum) value type inherits from the Enum Class. The following
rules outline the naming guidelines for enumerations:

• Use Pascal Case for Enum types and value names.

• Use abbreviations sparingly.

• Do not use an Enum suffix on Enum type names.

Confidential Focal3 Software Pvt Ltd

• Use a singular name for most Enum types, but use a plural name for Enum
types that are bit fields.

F3_Doc_003_Ver4.0 Page 11 of 62

• Always add the FlagsAttribute to a bit field Enum type.

Static Field Naming Guidelines

The following rules outline the naming guidelines for static fields:

• Use nouns, noun phrases, or abbreviations of nouns to name static fields.

• Use Pascal Case

• Use a Hungarian notation prefix on static field names.

• It is recommended that you use static properties instead of public static fields
whenever possible.

Parameter Naming Guidelines

The following rules outline the naming guidelines for parameters:
• Use descriptive parameter names. Parameter names should be descriptive

enough that the name of the parameter and its type can be used to
determine its meaning in most scenarios.

• Use camel case for parameter names.

• Use names that describe a parameter's meaning rather than names that

describe a parameter's type. Development tools should provide meaningful
information about a parameter's type. Therefore, a parameter's name can be
put to better use by describing meaning. Use type-based parameter names
sparingly and only where it is appropriate.

• Do not use reserved parameters. Reserved parameters are private

parameters that might be exposed in a future version if they are needed.
Instead, if more data is needed in a future version of your class library, add a
new overload for a method.

• Do not prefix parameter names with Hungarian type notation.

The following are examples of correctly named parameters.

[C#]
Type GetType (string typeName)
string Format (string format, args () As object)

[VB.NET]
GetType(typeName As String)As Type
Format(format As String, object [] args)As String

Method Naming Guidelines

Confidential Focal3 Software Pvt Ltd

The following rules outline the naming guidelines for methods:

F3_Doc_003_Ver4.0 Page 12 of 62

• Use verbs or verb phrases to name methods.

• Use Pascal Case

The following are examples of correctly named methods.

RemoveAll ()

GetCharArray ()

Invoke ()

Property Naming Guidelines

The following rules outline the naming guidelines for properties:

• Use a noun or noun phrase to name properties.

• Use Pascal Case.

• Do not use Hungarian notation.

• Consider creating a property with the same name as its underlying type. For

example, if you declare a property named Color, the type of the property
should likewise be Color. See the example later in this topic.

The following code example illustrates correct property naming.

[C#]
public class SampleClass
{
 public Color BackColor
 {
 // Code for Get and Set accessors goes here.
 }
}

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 13 of 62

[VB.NET]

Public Class SampleClass
 Public Property BackColor As Color
 ' Code for Get and Set accessors goes here.
 End Property
End Class

The following code example illustrates providing a property with the same name as a
type.

[C#]
public enum Color
{
 // Insert code for Enum here.
}

public class Control
{
 public Color Color
 {
 get {// Insert code here.}
 set {// Insert code here.}
 }
}

[VB.NET]
Public Enum Color
 ' Insert code for Enum here.
End Enum
Public Class Control
 Public Property Color As Color
 Get
 ' Insert code here.
 End Get
 Set
 ' Insert code here.
 End Set
 End Property
End Class

The following code example is incorrect because the property Color is of type
Integer.

[C#]
public enum Color {// Insert code for Enum here.}
public class Control
{
 public int Color
 {
 get {// Insert code here.}

Confidential Focal3 Software Pvt Ltd

 set {// Insert code here.}

F3_Doc_003_Ver4.0 Page 14 of 62

 }
}

[VB.NET]
Public Enum Color
 ' Insert code for Enum here.
End Enum
Public Class Control
 Public Property Color As Integer
 Get
 ' Insert code here.
 End Get
 Set
 ' Insert code here.
 End Set
 End Property
End Class

In the incorrect example, it is not possible to refer to the members of the Color
enumeration. Color.Xxx will be interpreted as accessing a member that first gets the
value of the Color property (type Integer in Visual Basic or type int in C#) and then
accesses a member of that value (which would have to be an instance member of
System.Int32).

Event Naming Guidelines

The following rules outline the naming guidelines for events:

• Use an EventHandler suffix on event handler names.

• Specify two parameters named sender and e. The sender parameter

represents the object that raised the event. The sender parameter is always
of type object, even if it is possible to use a more specific type. The state
associated with the event is encapsulated in an instance of an event class
named e. Use an appropriate and specific event class for the e parameter
type.

• Name an event argument class with the EventArgs suffix.

• Consider naming events with a verb.

• Use a gerund (the "ing" form of a verb) to create an event name that

expresses the concept of pre-event, and a past-tense verb to represent post-
event. For example, a Close event that can be canceled should have a Closing
event and a Closed event. Do not use the BeforeXxx/AfterXxx naming pattern.

• Do not use a prefix or suffix on the event declaration on the type. For

example, use Close instead of OnClose.

Confidential Focal3 Software Pvt Ltd

• In general, you should provide a protected method called OnXxx on types
with events that can be overridden in a derived class. This method should
only have the event parameter e, because the sender is always the instance
of the type.

F3_Doc_003_Ver4.0 Page 15 of 62

The following example illustrates an event handler with an appropriate name and
parameters.

[C#]
public delegate void MouseEventHandler (object sender, MouseEventArgs e);

[VB.NET]
Public Delegate Sub MouseEventHandler(sender As Object, e As MouseEventArgs)

The following example illustrates a correctly named event argument class.

[C#]
public class MouseEventArgs : EventArgs
{
 int x;
 int y;
 public MouseEventArgs(int x, int y) {this.x = x; this.y = y;}
 public int X {get {return x; } }
 public int Y {get {return y; } }
}

[VB.NET]
Public Class MouseEventArgs
 Inherits EventArgs
 Dim x As Integer
 Dim y As Integer

 Public Sub New MouseEventArgs(x As Integer, y As Integer)
 me.x = x
 me.y = y
 End Sub

 Public Property X As Integer
 Get
 Return x
 End Get
 End Property

 Public Property Y As Integer
 Get
 Return y
 End Get
 End Property
End Class

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 16 of 62

Guidelines for Exposing Functionality to COM

The common language runtime provides rich support for interoperating with COM
components. A COM component can be used from within a managed type and a
managed instance can be used by a COM component. This support is the key to
moving unmanaged code to managed code one piece at a time; however, it does
present some issues for class library designers. In order to fully expose a managed
type to COM clients, the type must expose functionality in a way that is supported by
COM and abides by the COM versioning contract.

Mark managed class libraries with the ComVisibleAttribute attribute to indicate
whether COM clients can use the library directly or whether they must use a wrapper
that shapes the functionality so that they can use it.

Types and interfaces that must be used directly by COM clients, such as to host in an
unmanaged container, should be marked with the ComVisible(true) attribute. The
transitive closure of all types referenced by exposed types should be explicitly
marked as ComVisible(true); if not, they will be exposed as IUnknown.

Note Members of a type can also be marked as ComVisible (false); this reduces
exposure to COM and therefore reduces the restrictions on what a managed type can
use.

Types marked with the ComVisible (true) attribute cannot expose functionality
exclusively in a way that is not usable from COM. Specifically; COM does not support
static methods or parameterized constructors. Test the type's functionality from COM
clients to ensure correct behavior. Make sure that you understand the registry
impact for making all types cocreateable.

Follow these guidelines when using marshal by reference:

• By default, instances should be marshal-by-value objects. This means that
their types should be marked as Serializable.

• Component types should be marshal-by-reference objects. This should
already be the case for most components, because the common base class,
System.Component Class, is a marshal-by-reference class.

• If the type encapsulates an operating system resource, it should be a
marshal-by-reference object. If the type implements the IDisposable
Interface it will very likely have to be marshaled by reference.
System.IO.Stream derives from MarshalByRefObject. Most streams, such as
FileStreams and NetworkStreams, encapsulate external resources, so they
should be marshal-by-reference objects.

• Instances that simply hold state should be marshal-by-value objects (such as
a DataSet).

Confidential Focal3 Software Pvt Ltd

• Special types that cannot be called across an AppDomain (such as a holder of
static utility methods) should not be marked as Serializable.

F3_Doc_003_Ver4.0 Page 17 of 62

Error Raising and Handling Guidelines

Please refer SAMPLE Error Handling.doc in source safe

($\SAMPLE\Documents\General\)

Array Usage Guidelines

An array type is defined by specifying the element type of the array, the rank
(number of dimensions) of the array, and the upper and lower bounds of each
dimension of the array. All these are included in any signature of an array type,
although they might be marked as dynamically (rather than statically) supplied.
Exact array types are created automatically by the runtime as they are required, and
no separate definition of the array type is needed. Arrays of a given type can only
hold elements of that type

Arrays vs. Collections

Class library designers might need to make difficult decisions about when to use an
array and when to return a collection. Although these types have similar usage
models, they have different performance characteristics. You should use a collection
in the following situations:

• When Add, Remove, or other methods for manipulating the collection are
supported.

• To add read-only wrappers around internal arrays.

Using Indexed Properties in Collections

Use an indexed property only as a default member of a collection class or interface.
Do not create families of functions in noncollection types. A pattern of methods, such
as Add, Item, and Count, signal that the type should be a collection.

Array Valued Properties

Use collections to avoid code inefficiencies. In the following code example, each call
to the myObj property creates a copy of the array. As a result, 2n+1 copies of the
array will be created in the following loop.

[C#]
for (int i = 0; i < obj.myObj.Count; i++)
 DoSomething(obj.myObj[i]);

[VB.NET]
Dim i As Integer
For i = 0 To obj.myObj.Count - 1

Confidential Focal3 Software Pvt Ltd

 DoSomething(obj.myObj(i))

F3_Doc_003_Ver4.0 Page 18 of 62

Next i

Returning Empty Arrays

String and Array properties should never return a null reference. Null can be difficult
to understand in this context. For example, a user might assume that the following
code will work.

[C#]
public void DoSomething()
{
 string s = SomeOtherFunc();
 if (s.Length > 0)
 {
 // Do something else.
 }
}

[VB.NET]
Public Sub DoSomething()
 Dim s As String = SomeOtherFunc()
 If s.Length > 0 Then
 ' Do something else.
 End If
End Sub

The general rule is that null, empty string (""), and empty (0 item) arrays should be
treated the same way. Return an empty array instead of a null reference.

Operator Overloading Usage Guidelines (C# Only)
The following rules outline the guidelines for operator overloading:

• Define operators on value types that are logical built-in language types, such
as the System.Decimal Structure.

• Provide operator-overloading methods only in the class in which the methods

are defined.

• Use the names and signature conventions described in the Common Language
Specification (CLS).

• Use operator overloading in cases where it is immediately obvious what the

result of the operation will be. For example, it makes sense to be able to
subtract one Time value from another Time value and get a TimeSpan.
However, it is not appropriate to use the or operator to create the union of
two database queries, or to use shift to write to a stream.

Confidential Focal3 Software Pvt Ltd

• Overload operators in a symmetric manner. For example, if you overload the
equality operator (==), you should also overload the not equal operator(!=).

F3_Doc_003_Ver4.0 Page 19 of 62

• Provide alternate signatures. Most languages do not support operator
overloading. For this reason, always include a secondary method with an
appropriate domain-specific name that has the equivalent functionality. It is a
Common Language Specification (CLS) requirement to provide this secondary
method. The following example is CLS-compliant.

[C#]
class Time
{
 TimeSpan operator -(Time t1, Time t2) { }
 TimeSpan Difference(Time t1, Time t2) { }
}

Guidelines for Implementing Equals and the Equality Operator
(==)

The following rules outline the guidelines for implementing the Equals method and
the equality operator (==):

• Implement the GetHashCode method whenever you implement the Equals
method. This keeps Equals and GetHashCode synchronized.

• Override the Equals method whenever you implement ==, and make them

do the same thing. This allows infrastructure code such as Hashtable and
ArrayList, which use the Equals method, to behave the same way as user
code written using ==.

• Override the Equals method any time you implement the IComparable

Interface.

• You should consider implementing operator overloading for the equality (==),
not equal (!=), less than (<), and greater than (>) operators when you
implement IComparable.

• Do not throw exceptions from the Equals or GetHashCode methods or the

equality operator (==).

Implementing the Equality Operator (==) on Value Types

In most programming languages there is no default implementation of the equality
operator (==) for value types. Therefore, you should overload == any time equality
is meaningful.

You should consider implementing the Equals method on value types because the
default implementation on System.ValueType will not perform as well as your custom
implementation.

Confidential Focal3 Software Pvt Ltd

Implement == any time you override the Equals method.

F3_Doc_003_Ver4.0 Page 20 of 62

Implementing the Equality Operator (==) on Reference Types

Most languages do provide a default implementation of the equality operator (==)
for reference types. Therefore, you should use care when implementing == on
reference types. Most reference types, even those that implement the Equals
method, should not override ==.

Override == if your type is a base type such as a Point, String, BigNumber, and so
on. Any time you consider overloading the addition (+) and subtraction (-)
operators, you also should consider overloading ==.

Guidelines for Casting Types
The following rules outline the usage guidelines for casts:

• Do not allow implicit casts that will result in a loss of precision. For example,
there should not be an implicit cast from Double to Int32, but there might
be one from Int32 to Int64.

• Do not throw exceptions from implicit casts because it is very difficult for the

developer to understand what is happening.

• Provide casts that operate on an entire object. The value that is cast should
represent the entire object, not a member of an object. For example, it is not
appropriate for a Button to cast to a string by returning its caption.

• Do not generate a semantically different value. For example, it is appropriate

to convert a Time or TimeSpan into an Int32. The Int32 still represents the
time or duration. It does not, however, make sense to convert a file name
string such as "c:\mybitmap.gif" into a Bitmap object.

Confidential Focal3 Software Pvt Ltd

• Do not cast values from different domains. Casts operate within a particular
domain of values. For example, numbers and strings are different domains. It
makes sense that an Int32 can cast to a Double. However, it does not make
sense for an Int32 to cast to a String, because they are in different domains.

F3_Doc_003_Ver4.0 Page 21 of 62

Threading Design Guidelines
The following rules outline the design guidelines for implementing threading:

• Avoid providing static methods that alter static state. In common server
scenarios, static state is shared across requests, which means multiple
threads can execute that code at the same time. This opens up the possibility
for threading bugs. Consider using a design pattern that encapsulates data
into instances that are not shared across requests.

• Static state must be thread safe.

• Instance state does not need to be thread safe. By default, a library is not

thread safe. Adding locks to create thread-safe code decreases performance,
increases lock contention, and creates the possibility for deadlock bugs to
occur. In common application models, only one thread at a time executes
user code, which minimizes the need for thread safety. For this reason, the
.NET Framework is not thread safe by default. In cases where you want to
provide a thread-safe version, use a GetSynchronized method to return a
thread-safe instance of a type. For examples, see the System.Collections
Namespace.

• Design your library with consideration for the stress of running in a server

scenario. Avoid taking locks whenever possible.

• Be aware of method calls in locked sections. Deadlocks can result when a
static method in class A calls static methods in class B and vice versa. If A
and B both synchronize their static methods, this will cause a deadlock. You
might discover this deadlock only under heavy threading stress.

• Performance issues can result when a static method in class A calls a static

method in class A. If these methods are not factored correctly, performance
will suffer because there will be a large amount of redundant synchronization.
Excessive use of fine-grained synchronization might negatively impact
performance. In addition, it might have a significant negative impact on
scalability.

Confidential Focal3 Software Pvt Ltd

• Be aware of issues with the lock statement (SyncLock in Visual Basic). It is
tempting to use the lock statement to solve all threading problems. However,
the System.Threading.Interlocked Class is superior for updates that must be
made automatically. It executes a single lock prefix if there is no contention.
In a code review, you should watch out for instances like the one shown in
the following example.

[C#]
lock(this)
{
 myField++;
}

[VB.NET]
SyncLock Me
 myField += 1

F3_Doc_003_Ver4.0 Page 22 of 62

End SyncLock

Alternatively, it might be better to use more elaborate code to create rhs outside of
the lock, as in the following example. Then, you can use an interlocked compare
exchange to update x only if it is still null. This assumes that creation of duplicate rhs
values does not cause negative side effects.

[C#]
if (x == null)
{
 lock (this)
 {
 if (x == null)
 {
 // Perform some elaborate code to create rhs.
 x = rhs;
 }
 }
}

[VB.NET]
If x Is Nothing Then
 SyncLock Me
 If x Is Nothing Then
 ' Perform some elaborate code to create rhs.
 x = rhs
 End If
 End SyncLock
End If

• Avoid the need for synchronization if possible. For high traffic pathways, it is
best to avoid synchronization. Sometimes the algorithm can be adjusted to
tolerate race conditions rather than eliminate them.

Guidelines for Asynchronous Programming

Asynchronous programming is a feature supported by many areas of the common
language runtime, such as Remoting, ASP.NET, and Windows Forms. Asynchronous
programming is a core concept in the .NET Framework. This topic introduces the
design pattern for asynchronous programming.

The philosophy behind these guidelines is as follows:

• The client should decide whether a particular call should be asynchronous.

Confidential Focal3 Software Pvt Ltd

• It is not necessary for a server to do additional programming in order to
support its clients' asynchronous behavior. The runtime should be able to
manage the difference between the client and server views. As a result, the
situation where the server has to implement IDispatch and do a large
amount of work to support dynamic invocation by clients is avoided.

F3_Doc_003_Ver4.0 Page 23 of 62

• The server can choose to explicitly support asynchronous behavior either

because it can implement asynchronous behavior more efficiently than a
general architecture, or because it wants to support only asynchronous
behavior by its clients. It is recommended that such servers follow the design
pattern outlined in this document for exposing asynchronous operations.

• Type safety must be enforced.

• The runtime provides the necessary services to support the asynchronous

programming model. These services include the following:

o Synchronization primitives, such as critical sections and
ReaderWriterLock instances.

o Synchronization constructs such as containers that support the

WaitForMultipleObjects method.

o Thread pools.

o Exposure to the underlying infrastructure, such as Message and
ThreadPool objects.

XML Documentation

C# provides a mechanism for developers to document their code using XML. In
source code files, lines that begin with /// and that precede a user-defined type such
as a class, delegate, or interface; a member such as a field, event, property, or
method; or a namespace declaration can be processed as comments and placed in a
file. C# is the only language that supports the XML documentation.

Example

The following sample provides a basic overview of a type that has been documented.
To compile the example, type the following command line:

[C#]
using System;

/// <summary>
/// Class level summary documentation goes here.</summary>
/// <remarks>
/// Longer comments can be associated with a type or member
/// through the remarks tag</remarks>
public class SomeClass
{
 /// <summary>
 /// Store for the name property</summary>
 private string myName = null;

 /// <summary>

Confidential Focal3 Software Pvt Ltd

 /// The class constructor. </summary>

F3_Doc_003_Ver4.0 Page 24 of 62

 public SomeClass()
 {
 // TODO: Add Constructor Logic here
 }

 /// <summary>
 /// Name property </summary>
 /// <value>
 /// A value tag is used to describe the property value</value>
 public string Name
 {
 get
 {
 if (myName == null)
 {
 throw new Exception("Name is null");
 }

 return myName;
 }
 }
 /// <summary>
 /// Description for SomeMethod.</summary>
 /// <param name="s"> Parameter description for s goes here</param>
 /// <seealso cref="String">
 /// You can use the cref attribute on any tag to reference a type or member
 /// and the compiler will check that the reference exists. </seealso>
 public void SomeMethod(string s)
 {
 }

 /// <summary>
 /// Some other method. </summary>
 /// <returns>
 /// Return results are described through the returns tag.</returns>
 /// <seealso cref="SomeMethod(string)">
 /// Notice the use of the cref attribute to reference a specific method </seealso>
 public int SomeOtherMethod()
 {
 return 0;
 }

 /// <summary>
 /// The entry point for the application.
 /// </summary>
 /// <param name="args"> A list of command line arguments</param>
 public static int Main(String[] args)
 {
 // TODO: Add code to start application here

 return 0;
 }

Confidential Focal3 Software Pvt Ltd

}

F3_Doc_003_Ver4.0 Page 25 of 62

XML documentation starts with ///. When you create a new project, the wizards put
some starter /// lines in for you. The processing of these comments has some
restrictions:

The documentation must be well-formed XML. If the XML is not well-formed, a
warning is generated and the documentation file will contain a comment saying that
an error was encountered. For more information on well-formed XML, see XML
Glossary.

Developers are free to create their own set of tags. There is a recommended set of
tags. Some of the recommended tags have special meanings:

The <param> tag is used to describe parameters. If used, the compiler will verify
that the parameter exists and that all parameters are described in the
documentation. If the verification failed, the compiler issues a warning.

The cref attribute can be attached to any tag to provide a reference to a code
element. The compiler will verify that this code element exists. If the verification
failed, the compiler issues a warning. The compiler also respects any using
statements when looking for a type described in the cref attribute.

The <summary> tag is used by IntelliSense inside Visual Studio to display additional
information about a type or member.

Documentation Tags for other .NET Languages

[VB.NET]
‘ <doc>
‘ Summary: summary documentation goes here.
‘ Remarks: Longer comments can be written here.
‘ Parameter: ParamName-1: Description of ParamName-1
‘ Parameter: ParamName-2: Description of ParamName-2
‘ Returns: Description of the return value
‘ </doc>

Describe the assembly information in the file AssemblyInfo.cs

General Information about an assembly is controlled through the following set of
attributes. Change these attribute values to modify the information associated with
an assembly.

[assembly: AssemblyTitle("DataManager")]
[assembly: AssemblyDescription("Data manager component for BreakFinder
application")]
[assembly: AssemblyConfiguration("Debug")]
[assembly: AssemblyCompany(" NeST Technologies")]
[assembly: AssemblyProduct("BreakFinder")]
[assembly: AssemblyCopyright("NeST Technologies 2002, All rights reserved.")]
[assembly: AssemblyTrademark("BreakFinder")]

Confidential Focal3 Software Pvt Ltd

[assembly: AssemblyCulture("")]

F3_Doc_003_Ver4.0 Page 26 of 62

Add additional information’s like Last Author and Last Modified Date in the same file
as comments

Class Member Usage Guidelines

This topic provides guidelines for using class members in class libraries.

Property Usage Guidelines

Determine whether a property or a method is more appropriate for your needs.
Choose a name for your property based on the recommended Property Naming
Guidelines. Avoid creating a property with the same name as an existing type.
Defining a property with the same name as a type causes ambiguity in some
programming languages. For example, System.Windows.Forms.Control has a
color property. Since a Color Structure also exists, the
System.Windows.Forms.Control color property is named BackColor. It is a more
meaningful name for the property and it does not conflict with the Color Structure
name.

There might be situations where you have to violate this rule. For example, the
System.Windows.Forms.Form Class contains an Icon property even though an Icon
class also exists in the .NET Framework. This is because Form.Icon is a more
straightforward and understandable name for the property than Form.FormIcon or
Form.DisplayIcon.

When accessing a property using the set accessor, preserve the value of the
property before you change it. This will ensure that data is not lost if the set
accessor throws an exception.

Property State Issues

Allow properties to be set in any order. Properties should be stateless with respect to
other properties. It is often the case that a particular feature of an object will not
take effect until the developer specifies a particular set of properties, or until an
object has a particular state. Until the object is in the correct state, the feature is not
active. When the object is in the correct state, the feature automatically activates
itself without requiring an explicit call. The semantics are the same regardless of the
order in which the developer sets the property values or how the developer gets the
object into the active state.

Raising Property-Changed Events

Components should raise property-changed events if they want to notify consumers
when the component's property changes programmatically. The naming convention
for a property-changed event is to add the Changed suffix to the property name,
such as TextChanged. For example, a control might raise a TextChanged event when
its text property changes. You can use a protected helper routine

Confidential Focal3 Software Pvt Ltd

Raise<Property>Changed, to raise this event. However, it is probably not worth the
overhead to raise a property-changed event for a hash table item addition. The

F3_Doc_003_Ver4.0 Page 27 of 62

following code example illustrates the implementation of a helper routine on a
property-changed event.

[C#]
class Control: Component
{
 string text;
 public string Text
 {
 get
 {
 return text;
 }
 set
 {
 if (!text.Equals(value))
 {
 text = value;
 RaiseTextChangedEvent();
 }
 }
 }
}

[VB.NET]
Class Control
 Inherits Component
 Private text As String
 Public Property Text() As String
 Get
 Return text
 End Get
 Set
 If Not text.Equals(value) Then
 text = value
 RaiseTextChangedEvent()
 End If
 End Set
 End Property
End Class

Data binding uses this pattern to allow two-way binding of the property. Without
<Property>Changed and Raise<Property>Changed events, data binding works
in one direction; if the database changes, the property is updated. Each property
that raises the <Property>Changed event should provide metadata to indicate that
the property supports data binding.

Confidential Focal3 Software Pvt Ltd

It is recommended that you raise changing/changed events if the value of a property
changes as a result of external forces. These events indicate to the developer that
the value of a property is changing or has changed as a result of an operation, rather
than by calling methods on the object.

F3_Doc_003_Ver4.0 Page 28 of 62

A good example is the Text property of an Edit control. As a user types information
into the control, the property value automatically changes. An event is raised before
the value of the property has changed. It does not pass the old or new value, and
the developer can cancel the event by throwing an exception. The name of the event
is the name of the property followed by the suffix Changing. The following code
example illustrates a changing event.

[C#]
class Edit : Control
{
 public string Text
 {
 get
 {
 return text;
 }
 set
 {
 if (text != value)
 {
 OnTextChanging(Event.Empty);
 text = value;
 }
 }
 }
}

[VB.NET]
Class Edit
 Inherits Control
 Public Property Text() As String
 Get
 Return text
 End Get
 Set
 If text <> value Then
 OnTextChanging(Event.Empty)
 text = value
 End If
 End Set
 End Property
End Class

An event is also raised after the value of the property has changed. This event
cannot be canceled. The name of the event is the name of the property followed by
the suffix Changed.

Confidential Focal3 Software Pvt Ltd

The generic PropertyChanged event should also be raised. The pattern for raising
both of these events is to raise the specific event from the OnPropertyChanged
method. The following example illustrates the use of the OnPropertyChanged
method.

F3_Doc_003_Ver4.0 Page 29 of 62

[C#]
class Edit : Control
{
 public string Text
 {
 get
 {
 return text;
 }
 set
 {
 if (text != value)
 {
 OnTextChanging(Event.Empty);
 text = value;
 RaisePropertyChangedEvent(Edit.ClassInfo.text);
 }
 }
 }

 protected void OnPropertyChanged(PropertyChangedEvent e)
 {
 if (e.PropertyChanged.Equals(Edit.ClassInfo.text))
 OnTextChanged(Event.Empty);
 if (onPropertyChangedHandler != null)
 onPropertyChangedHandler(this, e);
 }
}

[VB.NET]
Class Edit
 Inherits Control
 Public Property Text() As String
 Get
 Return text
 End Get
 Set
 If text <> value Then
 OnTextChanging(Event.Empty)
 text = value
 RaisePropertyChangedEvent(Edit.ClassInfo.text)
 End If
 End Set
 End Property
 Protected Sub OnPropertyChanged(e As PropertyChangedEvent)
 If e.PropertyChanged.Equals(Edit.ClassInfo.text) Then
 OnTextChanged(Event.Empty)
 End If
 If Not (onPropertyChangedHandler Is Nothing) Then
 onPropertyChangedHandler(Me, e)
 End If
 End Sub

Confidential Focal3 Software Pvt Ltd

End Class

F3_Doc_003_Ver4.0 Page 30 of 62

There are cases when the underlying value of a property is not stored as a field,
making it difficult to track changes to the value. When raising the changing event,
find all the places that the property value can change and provide the ability to
cancel the event. For example, the previous Edit control example is not entirely
accurate because the Text value is actually stored in the window handle (HWND).
In order to raise the TextChanging event, you must examine Windows messages to
determine when the text might change, and allow for an exception thrown in
OnTextChanging to cancel the event. If it is too difficult to provide a changing
event, it is reasonable to support only the changed event.

Properties vs. Methods

Class library designers often must decide between implementing a class member as
a property or a method. Use the following guidelines to help you choose between
these options.

• Use a property when the member is a logical data member. In the following
member declarations, Name is a property because it is a logical member of the
class.

[C#]
public string Name
get
{
 return Name;
}
set
{
 Name = value;
}

[VB.NET]
Public Property Name As String
 Get
 Return Name
 End Get
 Set
 Name = value
 End Set
End Property

Use a method when:

• The operation is a conversion, such as Object.ToString.

• The operation is expensive enough that you want to communicate to the user

that they should consider caching the result.

Confidential Focal3 Software Pvt Ltd

• Obtaining a property value using the get accessor would have an observable
side effect.

F3_Doc_003_Ver4.0 Page 31 of 62

• Calling the member twice in succession produces different results.

• The order of execution is important. Note that a type's properties should be

able to be set and retrieved in any order.

• The member is static but returns a value that can be changed.

• The member returns an array. Properties that return arrays can be very
misleading. Usually it is necessary to return a copy of the internal array so
that the user cannot change internal state. This, coupled with the fact that a
user can easily assume it is an indexed property, leads to inefficient code. In
the following code example, each call to the Methods property creates a copy
of the array. As a result, 2n+1 copies of the array will be created in the
following loop.

[C#]
Type type = // Get a type.
for (int i = 0; i < type.Methods.Length; i++)
{
 if (type.Methods[i].Name.Equals ("text"))
 {
 // Perform some operation.
 }
}

[VB.NET]
Dim type As Type = ' Get a type.
Dim i As Integer
For i = 0 To type.Methods.Length - 1
 If type.Methods(i).Name.Equals("text") Then
 ' Perform some operation.
 End If
Next i

The following example illustrates the correct use of properties and methods.

[C#]
class Connection
{
 // The following three members should be properties
 // because they can be set in any order.
 string DNSName {get{};set{};}
 string UserName {get{};set{};}
 string Password {get{};set{};}

 // The following member should be a method
 // because the order of execution is important.
 // This method cannot be executed until after the
 // properties have been set.
 bool Execute ();
}
[VB.NET]

Confidential Focal3 Software Pvt Ltd

Class Connection

F3_Doc_003_Ver4.0 Page 32 of 62

 ' The following three members should be properties
 ' because they can be set in any order.
 Property DNSName() As String
 ' Code for get and set accessors goes here.
 End Property
 Property UserName() As String
 ' Code for get and set accessors goes here.
 End Property
 Property Password() As String
 'Code for get and set accessors goes here.
 End Property
 ' The following member should be a method
 ' because the order of execution is important.
 ' This method cannot be executed until after the
 ' properties have been set.
 Function Execute() As Boolean

Read-Only and Write-Only Properties

Use a read-only property when the user cannot change the property's logical data
member. Do not use write-only properties.

Indexed Property Usage

The following rules outline guidelines for using indexed properties:

• Use only one indexed property per class, and make it the default indexed
property for that class.

• Do not use nondefault indexed properties.

• Name an indexed property Item. For example, see the DataGrid.Item

Property. Follow this rule, unless there is a name that is more obvious to
users, such as the Chars property on the String class.

• Use an indexed property when the property's logical data member is an array.

Confidential Focal3 Software Pvt Ltd

• Do not provide an indexed property and a method that are semantically
equivalent to two or more overloaded methods. In the following code
example, the Method property should be changed to GetMethod(string)
method.

[C#]
// Change the MethodInfo Type.Method property to a method.
MethodInfo Type.Method[string name]
MethodInfo Type.GetMethod (string name, Boolean ignoreCase)
// The MethodInfo Type.Method property is changed to
// the MethodInfo Type.GetMethod method.
MethodInfo Type.GetMethod(string name)
MethodInfo Type.GetMethod (string name, Boolean ignoreCase)

F3_Doc_003_Ver4.0 Page 33 of 62

[VB.NET]
' Change the MethodInfo Type.Method property to a method.
Property Type.Method(name As String) As MethodInfo
Function Type.GetMethod(name As String, ignoreCase As Boolean) As
MethodInfo
' The MethodInfo Type.Method property is changed to
' the MethodInfo Type.GetMethod method.
Function Type.GetMethod(name As String) As MethodInfo
Function Type.GetMethod(name As String, ignoreCase As Boolean) As
MethodInfo

Parameter Usage Guidelines

The following rules outline the usage guidelines for parameters:

Check for valid parameter arguments. Perform argument validation for every public
or protected method and property set accessor. Throw meaningful exceptions to the
developer for invalid parameter arguments. Use the System.ArgumentException
Class, or a class derived from System.ArgumentException. The following example
checks for valid parameter arguments and throws meaningful exceptions.

[C#]
class SampleClass
{
 public int Count
 {
 get
 {
 return count;
 }
 set
 {
 // Check for valid parameter.
 if (count < 0 || count >= MaxValue)
 throw newArgumentOutOfRangeException(
 Sys.GetString(
 "InvalidArgument","value",count.ToString()));
 }
 }

 public void Select(int start, int end)
 {
 // Check for valid parameter.
 if (start < 0)
 throw new ArgumentException(
 Sys.GetString("InvalidArgument","start",start.ToString()));
 // Check for valid parameter.
 if (end < 0)
 throw new ArgumentException(
 Sys.GetString("InvalidArgument","end",end.ToString()));

Confidential Focal3 Software Pvt Ltd

 }

F3_Doc_003_Ver4.0 Page 34 of 62

}

[VB.NET]
Class SampleClass
 Private countValue As Integer
 Private maxValue As Integer = 100
 Public Property Count() As Integer
 Get
 Return countValue
 End Get
 Set
 ' Check for valid parameter.
 If value < 0 Or value >= maxValue Then
 Throw New ArgumentOutOfRangeException("value", value,
 "Value is invalid.")
 End If
 countValue = value
 End Set
 End Property
 Public Sub SelectItem(start As Integer, [end] As Integer)
 ' Check for valid parameter.
 If start < 0 Then
 Throw New ArgumentOutOfRangeException("start", start, "Start
 is invalid.")
 End If
 ' Check for valid parameter.
 If [end] < 0 Then
 Throw New ArgumentOutOfRangeException("end", [end], "End is
 invalid.")
 End If
 ' Insert code to do other work here.
 Console.WriteLine("Starting at {0}", start)
 Console.WriteLine("Ending at {0}", [end])
 End Sub
End Class

Confidential Focal3 Software Pvt Ltd

Note that the actual checking does not necessarily have to happen in the public or
protected method itself. It could happen at a lower level in private routines. The
main point is that the entire surface area that is exposed to the developer checks for
valid arguments.

F3_Doc_003_Ver4.0 Page 35 of 62

Field Usage Guidelines

The following rules outline the usage guidelines for fields:

Confidential Focal3 Software Pvt Ltd

• Do not use instance fields that are public or protected (Public or
Protected in Visual Basic). If you avoid exposing fields directly to the
developer, classes can be versioned more easily because a field cannot be
changed to a property while maintaining binary compatibility. Consider
providing get and set property accessors for fields instead of making them
public. The presence of executable code in get and set property accessors
allows later improvements, such as creation of an object on demand, upon
usage of the property, or upon a property change notification. The following
code example illustrates the correct use of private instance fields with get
and set property accessors.

[C#]
public struct Point
{
 private int xValue;
 private int yValue;

 public Point(int x, int y)
 {
 this.xValue = x;
 this.yValue = y;
 }

 public int X
 {
 get
 {
 return xValue;
 }
 set
 {
 xValue = value;
 }
 }
 public int Y
 {
 get
 {
 return yValue;
 }
 set
 {
 yValue = value;
 }
 }
}

F3_Doc_003_Ver4.0 Page 36 of 62

[VB.NET]
Public Structure Point
 Private xValue As Integer
 Private yValue As Integer

 Public Sub New(x As Integer, y As Integer)
 Me.xValue = x
 Me.yValue = y
 End Sub

 Public Property X() As Integer
 Get
 Return xValue
 End Get
 Set
 xValue = value
 End Set
 End Property
 Public Property Y() As Integer
 Get
 Return yValue
 End Get
 Set
 yValue = value
 End Set
 End Property
End Structure

Confidential Focal3 Software Pvt Ltd

• Expose a field to a derived class by using a protected property that returns
the value of the field. This is illustrated in the following code example.

[C#]
public class Control: Component
{
 private int handle;
 protected int Handle
 {
 get
 {
 return handle;
 }
 }
}

[VB.NET]
Public Class Control
 Inherits Component
 Private handle As Integer

 Protected ReadOnly Property Handle() As Integer
 Get
 Return handle

F3_Doc_003_Ver4.0 Page 37 of 62

 End Get
 End Property
 End Class

• It is recommended that you use read-only static fields instead of properties
where the value is a global constant. This pattern is illustrated in the following
code example.

[C#]
public struct Int32
{
 public static readonly int MaxValue = 2147483647;
 public static readonly int MinValue = -2147483648;
 // Insert other members here.
}

[VB.NET]
Public Structure Int32
 Public Const MaxValue As Integer = 2147483647
 Public Const MinValue As Integer = -2147483648
 ' Insert other members here.
End Structure

• Spell out all words used in a field name. Use abbreviations only if developers
generally understand them. Do not use uppercase letters for field names. The
following is an example of correctly named fields.

[C#]
class SampleClass
{
 string url;
 string destinationUrl;
}

[VB.NET]
Class SampleClass
 Private url As String
 Private destinationUrl As String
End Class

• Do not use Hungarian notation for field names. Good names describe
semantics, not type.

Confidential Focal3 Software Pvt Ltd

• Do not apply a prefix to field names or static field names. Specifically, do not
apply a prefix to a field name to distinguish between static and nonstatic
fields. For example, applying a g_ or s_ prefix is incorrect.

F3_Doc_003_Ver4.0 Page 38 of 62

Confidential Focal3 Software Pvt Ltd

• Use public static read-only fields for predefined object instances. If there are
predefined instances of an object, declare them as public static read-only
fields of the object itself. Use Pascal case because the fields are public. The
following code example illustrates the correct use of public static read-only
fields.

[C#]
public struct Color
{
 public static readonly Color Red = new Color(0x0000FF);
 public static readonly Color Green = new Color(0x00FF00);
 public static readonly Color Blue = new Color(0xFF0000);
 public static readonly Color Black = new Color(0x000000);
 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)
 { // Insert code here.}
 public Color(byte r, byte g, byte b)
 { // Insert code here.}

 public byte RedValue
 {
 get
 {
 return Color;
 }
 }
 public byte GreenValue
 {
 get
 {
 return Color;
 }
 }
 public byte BlueValue
 {
 get
 {
 return Color;
 }
 }
}

F3_Doc_003_Ver4.0 Page 39 of 62

[VB.NET]
Public Structure Color
 Public Shared Red As New Color(&HFF)
 Public Shared Green As New Color(&HFF00)
 Public Shared Blue As New Color(&HFF0000)
 Public Shared Black As New Color(&H0)
 Public Shared White As New Color(&HFFFFFF)

 Public Sub New(rgb As Integer)
 ' Insert code here.
 End Sub

 Public Sub New(r As Byte, g As Byte, b As Byte)
 ' Insert code here.
 End Sub

 Public ReadOnly Property RedValue() As Byte
 Get
 Return Color
 End Get
 End Property

 Public ReadOnly Property GreenValue() As Byte
 Get
 Return Color
 End Get
 End Property

 Public ReadOnly Property BlueValue() As Byte
 Get
 Return Color
 End Get
 End Property
End Structure

Constructor Usage Guidelines

The following rules outline the usage guidelines for constructors:

Confidential Focal3 Software Pvt Ltd

• Provide a default private constructor if there are only static methods and
properties on a class. In the following example, the private constructor
prevents the class from being created.

[C#]
public sealed class Environment
{
 // Private constructor prevents the class from being created.
 private Environment()
 {
 // Code for the constructor goes here.
 }

F3_Doc_003_Ver4.0 Page 40 of 62

}

[VB.NET]
NotInheritable Public Class Environment
 ' Private constructor prevents the class from being created.
 Private Sub New()
 ' Code for the constructor goes here.
 End Sub
End Class

• Minimize the amount of work done in the constructor. Constructors should not
do more than capture the constructor parameter or parameters. This delays
the cost of performing further operations until the user uses a specific feature
of the instance.

• Provide a protected (Protected in Visual Basic) constructor that can be used

by types in a derived class.

• It is recommended that you not provide an empty constructor for a value type
struct. If you do not supply a constructor, the runtime initializes all the fields
of the struct to zero. This makes array and static field creation faster.

• Use parameters in constructors as shortcuts for setting properties. There

should be no difference in semantics between using an empty constructor
followed by property set accessors, and using a constructor with multiple
arguments. The following three code examples are equivalent:
[C#]
// Example #1.
Class SampleClass = new Class();
SampleClass.A = "a";
SampleClass.B = "b";

// Example #2.
Class SampleClass = new Class("a");
SampleClass.B = "b";

// Example #3.
Class SampleClass = new Class ("a", "b");

[VB.NET]
' Example #1.
Dim SampleClass As New Class()
SampleClass.A = "a"
SampleClass.B = "b"

' Example #2.
Dim SampleClass As New Class("a")
SampleClass.B = "b"

' Example #3.
Dim SampleClass As New Class("a", "b")

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 41 of 62

Confidential Focal3 Software Pvt Ltd

• Use a consistent ordering and naming pattern for constructor parameters. A
common pattern for constructor parameters is to provide an increasing
number of parameters to allow the developer to specify a desired level of
information. The more parameters that you specify, the more detail the
developer can specify. In the following code example, there is a consistent
order and naming of the parameters for all the SampleClass constructors.

[C#]
public class SampleClass
{
 private const string defaultForA = "default value for a";
 private const string defaultForB = "default value for b";
 private const string defaultForC = "default value for c";

 private string a;
 private string b;
 private string c;

 public MyClass():this(defaultForA, defaultForB, defaultForC) {}
 public MyClass (string a) : this(a, defaultForB, defaultForC) {}
 public MyClass (string a, string b) : this(a, b, defaultForC) {}
 public MyClass (string a, string b, string c)
 {
 this.a = a;
 this.b = b;
 this.c = c;
 }
}

[VB.NET]
Public Class SampleClass
 Private Const defaultForA As String = "default value for a"
 Private Const defaultForB As String = "default value for b"
 Private Const defaultForC As String = "default value for c"
 Private a As String
 Private b As String
 Private c As String

 Public Sub New()
 MyClass.New(defaultForA, defaultForB, defaultForC)
 Console.WriteLine("New()")
 End Sub

 Public Sub New(a As String)
 MyClass.New(a, defaultForB, defaultForC)
 End Sub

 Public Sub New(a As String, b As String)
 MyClass.New(a, b, defaultForC)
 End Sub
 Public Sub New(a As String, b As String, c As String)
 Me.a = a

F3_Doc_003_Ver4.0 Page 42 of 62

 Me.b = b
 Me.c = c
 End Sub
End Class

Method Usage Guidelines

The following rules outline the usage guidelines for methods:

• Choose a name for your event based on the recommended Method Naming
Guidelines.

• Do not use Hungarian notation.

• By default, methods are nonvirtual. Maintain this default in situations where it
is not necessary to provide virtual methods. For more information about
implementing inheritance, see Base Class Usage Guidelines.

Method Overloading Guidelines

Method overloading occurs when a class contains two methods with the same name,
but different signatures. This section provides some guidelines for the use of
overloaded methods.

• Use method overloading to provide different methods that do semantically the
same thing.

• Use method overloading instead of allowing default arguments. Default

arguments do not version well and therefore are not allowed in the Common
Language Specification (CLS). The following code example illustrates an
overloaded String.IndexOf method.

[C#]
int String.IndexOf (String name);
int String.IndexOf (String name, int startIndex);

[VB.NET]
Function String.IndexOf(name As String) As Integer
Function String.IndexOf(name As String, startIndex As Integer) As Integer

Confidential Focal3 Software Pvt Ltd

• Use default values correctly. In a family of overloaded methods, the complex
method should use parameter names that indicate a change from the default
state assumed in the simple method. For example, in the following code, the
first method assumes the search will not be case-sensitive. The second
method uses the name ignoreCase rather than caseSensitive to indicate how the
default behavior is being changed.

[C#]
// Method #1: ignoreCase = false.
MethodInfo Type.GetMethod(String name);

F3_Doc_003_Ver4.0 Page 43 of 62

// Method #2: Indicates how the default behavior of method #1 is being //
changed.
 MethodInfo Type.GetMethod (String name, Boolean ignoreCase);

[VB.NET]
' Method #1: ignoreCase = false.
Function Type.GetMethod(name As String) As MethodInfo
' Method #2: Indicates how the default behavior of method #1
' is being changed.
Function Type.GetMethod(name As String, ignoreCase As Boolean) As
MethodInfo

Confidential Focal3 Software Pvt Ltd

• Use a consistent ordering and naming pattern for method parameters. It is
common to provide a set of overloaded methods with an increasing number of
parameters to allow the developer to specify a desired level of information.
The more parameters that you specify, the more detail the developer can
specify. In the following code example, the overloaded Execute method has a
consistent parameter order and naming pattern variation. Each of the Execute
method variations uses the same semantics for the shared set of parameters.

[C#]
public class SampleClass
{
 readonly string defaultForA = "default value for a";
 readonly string defaultForB = "default value for b";
 readonly string defaultForC = "default value for c";

 public void Execute()
 {
 Execute(defaultForA, defaultForB, defaultForC);
 }

 public void Execute (string a)
 {
 Execute(a, defaultForB, defaultForC);
 }

 public void Execute (string a, string b)
 {
 Execute (a, b, defaultForC);
 }

 public virtual void Execute (string a, string b, string c)
 {
 Console.WriteLine(a);
 Console.WriteLine(b);
 Console.WriteLine(c);
 Console.WriteLine();
 }
}

F3_Doc_003_Ver4.0 Page 44 of 62

[VB.NET]
Public Class SampleClass
 Private defaultForA As String = "default value for a"
 Private defaultForB As String = "default value for b"
 Private defaultForC As String = "default value for c"

 Overloads Public Sub Execute()
 Execute(defaultForA, defaultForB, defaultForC)
 End Sub

 Overloads Public Sub Execute(a As String)
 Execute(a, defaultForB, defaultForC)
 End Sub

 Overloads Public Sub Execute(a As String, b As String)
 Execute(a, b, defaultForC)
 End Sub
 Overloads Public Overridable Sub Execute(a As String, b As String, c
 As String)
 Console.WriteLine(a)
 Console.WriteLine(b)
 Console.WriteLine(c)
 Console.WriteLine()
 End Sub
End Class

This consistent pattern applies if the parameters have different types. Note that the
only method in the group that should be virtual is the one that has the most
parameters.

Confidential Focal3 Software Pvt Ltd

• Use method overloading for variable numbers of parameters. Where it is
appropriate to specify a variable number of parameters to a method, use the
convention of declaring n methods with increasing numbers of parameters.
Provide a method that takes an array of values for numbers greater than n.
For example, n=3 or n=4 is appropriate in most cases. The following example
illustrates this pattern.

[C#]
public class SampleClass
{
 public void Execute(string a)
 {
 Execute(new string[] {a});
 }

 public void Execute(string a, string b)
 {
 Execute(new string[] {a, b});
 }

 public void Execute(string a, string b, string c)
 {

F3_Doc_003_Ver4.0 Page 45 of 62

 Execute(new string[] {a, b, c});
 }

 public virtual void Execute(string[] args)
 {
 foreach (string s in args)
 {
 Console.WriteLine(s);
 }
 }
}
[VB.NET]
Public Class SampleClass

 Overloads Public Sub Execute(a As String)
 Execute(New String() {a})
 End Sub

 Overloads Public Sub Execute(a As String, b As String)
 Execute(New String() {a, b})
 End Sub

 Overloads Public Sub Execute(a As String, b As String, c As String)
 Execute(New String() {a, b, c})
 End Sub

 Overloads Public Overridable Sub Execute(args() As String)
 Dim s As String
 For Each s In args
 Console.WriteLine(s)
 Next s
 End Sub
End Class

Confidential Focal3 Software Pvt Ltd

• If you must provide the ability to override a method, make only the most
complete overload virtual and define the other operations in terms of it. The
following example illustrates this pattern.

[C#]
public class SampleClass
{
 private string myString;

 public MyClass(string str)
 {
 this.myString = str;
 }

 public int IndexOf(string s)
 {
 return IndexOf (s, 0);
 }

F3_Doc_003_Ver4.0 Page 46 of 62

 public int IndexOf(string s, int startIndex)
 {
 return IndexOf(s, startIndex, myString.Length - startIndex);
 }

 public virtual int IndexOf(string s, int startIndex, int count)
 {
 return myString.IndexOf(s, startIndex, count);
 }
}

[VB.NET]
Public Class SampleClass
 Private myString As String

 Public Sub New(str As String)
 Me.myString = str
 End Sub

 Overloads Public Function IndexOf(s As String) As Integer
 Return IndexOf(s, 0)
 End Function

 Overloads Public Function IndexOf(s As String, startIndex As
 Integer) As Integer
 Return IndexOf(s, startIndex, myString.Length - startIndex)
 End Function

 Overloads Public Overridable Function IndexOf(s As String,
 startIndex As Integer, count As Integer) As Integer
 Return myString.IndexOf(s, startIndex, count)
 End Function
End Class

Methods With Variable Numbers of Arguments

You might want to expose a method that takes a variable number of arguments. A
classic example is the printf method in the C programming language. For managed
class libraries, use the params (ParamArray in Visual Basic) keyword for this
construct. For example, use the following code instead of several overloaded
methods.

[C#]

void Format(string formatString, params object [] args)

[VB.NET]

Confidential Focal3 Software Pvt Ltd

Sub Format(formatString As String, ParamArray args() As Object)

F3_Doc_003_Ver4.0 Page 47 of 62

You should not use the VarArgs calling convention exclusively because the Common
Language Specification does not support it.

For extremely performance-sensitive code, you might want to provide special code
paths for a small number of elements. You should only do this if you are going to
special case the entire code path (not just create an array and call the more general
method). In such cases, the following pattern is recommended as a balance between
performance and the cost of specially cased code.

[C#]
void Format(string formatString, object arg1)
void Format(string formatString, object arg1, object arg2)
void Format(string formatString, params object [] args)

[VB.NET]
Sub Format(formatString As String, arg1 As Object)
Sub Format(formatString As String, arg1 As Object, arg2 As Object)
Sub Format(formatString As String, ParamArray args() As Object)

Event Usage Guidelines

The following rules outline the usage guidelines for events:

• Choose a name for your event based on the recommended Event Naming
Guidelines.

• Do not use Hungarian notation.

• When you refer to events in documentation, use the phrase, "an event was

raised" instead of "an event was fired" or "an event was triggered."

• In languages that support the void keyword, use a return type of void for
event handlers, as shown in the following code example.

[C#]
public delegate void MouseEventHandler(object sender, MouseEventArgs e);

Confidential Focal3 Software Pvt Ltd

• Event classes should extend the System.EventArgs Class, as shown in the
following example.

[C#]
public class MouseEvent: EventArgs {}

[VB.NET]
Public Class MouseEventArgs
Inherits EventArgs
' Code for the class goes here.
End Class

F3_Doc_003_Ver4.0 Page 48 of 62

• Implement an event handler using the public EventHandler Click syntax. Provide
an add and a remove accessor to add and remove event handlers. If your
programming language does not support this syntax, name methods add_Click
and remove_Click.

• If a class raises multiple events, the compiler generates one field per event

delegate instance. If the number of events is large, the storage cost of one
field per delegate might not be acceptable. For those situations, the .NET
Framework provides a construct called event properties that you can use
together with another data structure (of your choice) to store event
delegates. The following code example illustrates how the Component class
implements this space-efficient technique for storing handlers.

• Use a protected (Protected in Visual Basic) virtual method to raise each

event. This technique is not appropriate for sealed classes, because classes
cannot be derived from them. The purpose of the method is to provide a way
for a derived class to handle the event using an override. This is more natural
than using delegates in situations where the developer is creating a derived
class. The name of the method takes the form OnEventName, where
EventName is the name of the event being raised. For example:
[C#]
public class Button
{
 ButtonClickHandler onClickHandler;

 protected virtual void OnClick(ClickEvent e)
 {
 // Call the delegate if non-null.
 if (onClickHandler != null)
 onClickHandler(this, e);
 }
}

[VB.NET]
Public Class Button
 Private onClickHandler As ButtonClickHandler
 Protected Overridable Sub OnClick(e As ClickEvent)
 ' Call the delegate if non-null.
 If Not (onClickHandler Is Nothing) Then
 onClickHandler(Me, e)
 End If
 End Sub
End Class

Confidential Focal3 Software Pvt Ltd

The derived class can choose not to call the base class during the processing of
OnEventName. Be prepared for this by not including any processing in the
OnEventName method that is required for the base class to work correctly.

F3_Doc_003_Ver4.0 Page 49 of 62

Confidential Focal3 Software Pvt Ltd

• You should assume that an event handler could contain any code. Classes
should be ready for the event handler to perform almost any operation, and
in all cases the object should be left in an appropriate state after the event
has been raised. Consider using a try/finally block at the point in code where
the event is raised. Since the developer can perform a callback function on
the object to perform other actions, do not assume anything about the object
state when control returns to the point at which the event was raised. For
example:

[C#]
public class Button
{
 ButtonClickHandler onClickHandler;

 protected void DoClick()
 {
 // Paint button in indented state.
 PaintDown();
 try
 {
 // Call event handler.
 OnClick();
 }
 finally
 {
 // Window might be deleted in event handler.
 if (windowHandle != null)
 // Paint button in normal state.
 PaintUp();
 }
 }

 protected virtual void OnClick(ClickEvent e)
 {
 if (onClickHandler != null)
 onClickHandler(this, e);
 }
}

[VB.NET]
Public Class Button
 Private onClickHandler As ButtonClickHandler
 Protected Sub DoClick()
 ' Paint button in indented state.
 PaintDown()
 Try
 ' Call event handler.
 OnClick()
 Finally
 ' Window might be deleted in event handler.
 If Not (windowHandle Is Nothing) Then
 ' Paint button in normal state.
 PaintUp()

F3_Doc_003_Ver4.0 Page 50 of 62

 End If
 End Try
 End Sub
 Protected Overridable Sub OnClick(e As ClickEvent)
 If Not (onClickHandler Is Nothing) Then
 onClickHandler(Me, e)
 End If
 End Sub
End Class

• Use or extend the System.ComponentModel.CancelEventArgs Class to allow
the developer to control the default behavior of an object. For example, the
TreeView control raises a CancelEvent when the user is about to edit a node
label. The following code example illustrates how a developer can use this
event to prevent a node from being edited.

[C#]
public class Form1: Form
{
 TreeView treeView1 = new TreeView();

 void treeView1_BeforeLabelEdit(object source,
 NodeLabelEditEvent e)
 {
 e.cancel = true;
 }
}
[VB.NET]
Public Class Form1
 Inherits Form
 Private treeView1 As New TreeView()

 Sub treeView1_BeforeLabelEdit(source As Object, e As NodeLabelEditEvent)
 e.cancel = True
 End Sub
End Class

Note that in this case, no error is generated to the user. The label is read-only.

The CancelEvent is not appropriate in cases where the developer would cancel the
operation and return an exception. In these cases, the event does not derive from
CancelEvent. You should raise an exception inside of the event handler in order to
cancel. For example, the user might want to write validation logic in an edit control
as shown.

[C#]
public class Form1: Form
{

Confidential Focal3 Software Pvt Ltd

 Edit edit1 = new Edit();

F3_Doc_003_Ver4.0 Page 51 of 62

 void edit1_TextChanging(object source, Event e)
 {
 throw new RuntimeException("Invalid edit");
 }
}

[VB.NET]
Public Class Form1
 Inherits Form
 Private edit1 As Edit = New Edit()

 Sub edit1_TextChanging(source As Object, e As Event)
 Throw New RuntimeException("Invalid edit")
 End Sub
End Class

Type Usage Guidelines

Types are the units of encapsulation in the common language runtime. This section
provides usage guidelines for the basic kinds of types.

Base Class Usage Guidelines

A class is the most common kind of type. A class can be abstract or sealed. An
abstract class requires a derived class to provide an implementation. A sealed class
does not allow a derived class. It is recommended that you use classes over other
types.

Base classes are a useful way to group objects that share a common set of
functionality. Base classes can provide a default set of functionality, while allowing
customization though extension.

You should add extensibility or polymorphism to your design only if you have a clear
customer scenario for it. For example, providing an interface for data adapters is
difficult and serves no real benefit. Developers will still have to program against each
adapter specifically, so there is only marginal benefit from providing an interface.
However, you do need to support consistency between all adapters. Although an
interface or abstract class is not appropriate in this situation, providing a consistent
pattern is very important. You can provide consistent patterns for developers in base
classes. Follow these guidelines for creating base classes.

Base Classes vs. Interfaces

Confidential Focal3 Software Pvt Ltd

An interface type is a partial description of a value, potentially supported by many
object types. Use base classes instead of interfaces whenever possible. From a
versioning perspective, classes are more flexible than interfaces. With a class, you
can ship Version 1.0 and then in Version 2.0 add a new method to the class. As long
as the method is not abstract, any existing derived classes continue to function
unchanged.

F3_Doc_003_Ver4.0 Page 52 of 62

Because interfaces do not support implementation inheritance, the pattern that
applies to classes does not apply to interfaces. Adding a method to an interface is
equivalent to adding an abstract method to a base class; any class that implements
the interface will break because the class does not implement the new method.

Interfaces are appropriate in the following situations:

• Several unrelated classes want to support the protocol.

• These classes already have established base classes (for example, some are

user interface (UI) controls, and some are XML Web services).

• Aggregation is not appropriate or practical.

In all other situations, class inheritance is a better model.

Protected Methods and Constructors

Provide class customization through protected methods. The public interface of a
base class should provide a rich set of functionality for the consumer of the class.
However, users of the class often want to implement the fewest number of methods
possible to provide that rich set of functionality to the consumer. To meet this goal,
provide a set of nonvirtual or final public methods that call through to a single
protected method that provides implementations for the methods. This method
should be marked with the Impl suffix. Using this pattern is also referred to as
providing a Template method. The following code example demonstrates this
process.

[C#]
public class MyClass
{
 private int x;
 private int y;
 private int width;
 private int height;
 BoundsSpecified specified;

 public void SetBounds(int x, int y, int width, int height)
 {
 SetBoundsCore(x, y, width, height, this.specified);
 }

 public void SetBounds(int x, int y, int width, int height,
 BoundsSpecified specified)
 {
 SetBoundsCore(x, y, width, height, specified);
 }

 protected virtual void SetBoundsCore(int x, int y, int width, int
 height, BoundsSpecified specified)
 {

Confidential Focal3 Software Pvt Ltd

 // Add code to perform meaningful opertions here.

F3_Doc_003_Ver4.0 Page 53 of 62

 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.specified = specified;
 }
}

[VB.NET]
Public Class SampleClass
 Private x As Integer
 Private y As Integer
 Private width As Integer
 Private height As Integer
 Private specified As BoundsSpecified

 Overloads Public Sub SetBounds(x As Integer, y As Integer, width As
 Integer, height As Integer)
 SetBoundsCore(x, y, width, height, Me.specified)
 End Sub

 Overloads Public Sub SetBounds(x As Integer, y As Integer, width As
 Integer, height As Integer, specified As BoundsSpecified)

 SetBoundsCore(x, y, width, height, specified)
 End Sub

 Protected Overridable Sub SetBoundsCore(x As Integer, y As Integer,
 width As Integer, height As Integer,
 specified As BoundsSpecified)
 ' Insert code to perform meaningful operations here.
 Me.x = x
 Me.y = y
 Me.width = width
 Me.height = height
 Me.specified = specified
 Console.WriteLine("x {0}, y {1}, width {2}, height {3}, bounds {4}",
 Me.x, Me.y, Me.width, Me.height, Me.specified)
 End Sub
End Class

Many compilers will insert a public or protected constructor if you do not.
Therefore, for better documentation and readability of your source code, you should
explicitly define a protected constructor on all abstract classes.

Sealed Class Usage Guidelines

The following rules outline the usage guidelines for sealed classes:

Confidential Focal3 Software Pvt Ltd

• Use sealed classes if it will not be necessary to create derived classes. A class
cannot be derived from a sealed class.

F3_Doc_003_Ver4.0 Page 54 of 62

• Use sealed classes if there are only static methods and properties on a class.
The following code example shows a correctly defined sealed class.
[C#]
public sealed class Runtime
{
 // Private constructor prevents the class from being created.
 private Runtime();

 // Static method.
 public static string GetCommandLine()
 {
 // Implementation code goes here.
 }
}

[VB.NET]
NotInheritable Public Class Runtime
 ' Private constructor prevents the class from being created.
 Private Sub New()
 End Sub

 ' Static method.
 Public Shared Sub GetCommandLine() As String
 ' Implementation code goes here.
 End Sub
End Class

Delegate Usage Guidelines

A delegate is a powerful tool that allows the managed code object model designer to
encapsulate method calls. Delegates are useful for event notifications and callback
functions.

Event notifications

Use the appropriate event design pattern for events even if the event is not user
interface-related. For more information on using events, see the Event Usage
Guidelines.

Callback functions

Callback functions are passed to a method so that user code can be called multiple
times during execution to provide customization. Passing a Compare callback
function to a sort routine is a classic example of using a callback function. These
methods should use the callback function conventions described in Callback Function
Usage.

Confidential Focal3 Software Pvt Ltd

Name end callback functions with the suffix Callback.

F3_Doc_003_Ver4.0 Page 55 of 62

Value Type Usage Guidelines

A value type describes a value that is represented as a sequence of bits stored on
the stack. For a description of all the .NET Framework's built-in data types, see Value
Types. This section provides guidelines for using the structure (struct) and
enumeration (enum) value types.

Struct Usage Guidelines

It is recommended that you use a struct for types that meet any of the following
criteria:

• Act like primitive types.

• Have an instance size under 16 bytes.

• Are immutable.

• Value semantics are desirable.

The following example shows a correctly defined structure.
[C#]
public struct Int32: IComparable, IFormattable
{
 public const int MinValue = -2147483648;
 public const int MaxValue = 2147483647;

 public static string ToString(int i)
 {
 // Insert code here.
 }

 public string ToString(string format, IFormatProvider formatProvider)
 {
 // Insert code here.
 }

 public override string ToString()
 {
 // Insert code here.
 }

 public static int Parse(string s)
 {
 // Insert code here.
 return 0;
 }

 public override int GetHashCode()
 {
 // Insert code here.
 return 0;

Confidential Focal3 Software Pvt Ltd

 }

F3_Doc_003_Ver4.0 Page 56 of 62

 public override bool Equals(object obj)
 {
 // Insert code here.
 return false;
 }

 public int CompareTo(object obj)
 {
 // Insert code here.
 return 0;
 }

}

[VB.NET]
Public Structure Int32
 Implements IFormattable
 Implements IComparable
 Public Const MinValue As Integer = -2147483648
 Public Const MaxValue As Integer = 2147483647

 Private intValue As Integer

 Overloads Public Shared Function ToString(i As Integer) As String
 ' Insert code here.
 End Function

 Overloads Public Function ToString(ByVal format As String, ByVal
 formatProvider As IFormatProvider) As String Implements
 IFormattable.ToString
 ' Insert code here.
 End Function

 Overloads Public Overrides Function ToString() As String
 ' Insert code here.
 End Function
 Public Shared Function Parse(s As String) As Integer
 ' Insert code here.
 Return 0
 End Function

 Public Overrides Function GetHashCode() As Integer
 ' Insert code here.
 Return 0
 End Function

 Public Overrides Overloads Function Equals(obj As Object) As Boolean
 ' Insert code here.
 Return False
 End Function

Confidential Focal3 Software Pvt Ltd

 Public Function CompareTo(obj As Object) As Integer Implements

F3_Doc_003_Ver4.0 Page 57 of 62

 IComparable.CompareTo
 ' Insert code here.
 Return 0
 End Function
End Structure

When using a struct, do not provide a default constructor. The runtime will insert a
constructor that initializes all the values to a zero state. This allows arrays of structs
to be created more efficiently. You should also allow a state where all instance data
is set to zero, false, or null (as appropriate) to be valid without running the
constructor.

Enum Usage Guidelines

The following rules outline the usage guidelines for enumerations:

• Use an enum to strongly type parameters, properties, and return types.
Always define enumerated values using an enum if they are used in a
parameter or property. This allows development tools to know the possible
values for a property or parameter. The following example shows how to
define an enum type.

[C#]
public enum FileMode
{
 Append,
 Create,
 CreateNew,
 Open,
 OpenOrCreate,
 Truncate
}

[VB.NET]
Public Enum FileMode
 Append
 Create
 CreateNew
 Open
 OpenOrCreate
 Truncate
End Enum

The following example shows the constructor for a FileStream object that uses the
FileMode enum.

[C#]

public FileStream(string path, FileMode mode);

Confidential Focal3 Software Pvt Ltd

F3_Doc_003_Ver4.0 Page 58 of 62

[VB.NET]
Public Sub New(ByVal path As String, ByVal mode As FileMode);

Confidential Focal3 Software Pvt Ltd

• Use the System.FlagsAttribute Class to create custom attribute for an enum if
a bitwise OR operation is to be performed on the numeric values. This
attribute is applied in the following code example.

[C#]

[Flags]
public enum Bindings
{
 IgnoreCase = 0x01,
 NonPublic = 0x02,
 Static = 0x04,
 InvokeMethod = 0x0100,
 CreateInstance = 0x0200,
 GetField = 0x0400,
 SetField = 0x0800,
 GetProperty = 0x1000,
 SetProperty = 0x2000,
 DefaultBinding = 0x010000,
 DefaultChangeType = 0x020000,
 Default = DefaultBinding | DefaultChangeType,
 ExactBinding = 0x040000,
 ExactChangeType = 0x080000,
 BinderBinding = 0x100000,
 BinderChangeType = 0x200000
}

[VB.NET]
<Flags> _
Public Enum Bindings
 IgnoreCase = &H1
 NonPublic = &H2
 Static = &H4
 InvokeMethod = &H100
 CreateInstance = &H200
 GetField = &H400
 SetField = &H800
 GetProperty = &H1000
 SetProperty = &H2000
 DefaultBinding = &H10000
 DefaultChangeType = &H20000
 [Default] = DefaultBinding Or DefaultChangeType
 ExactBinding = &H40000
 ExactChangeType = &H80000
 BinderBinding = &H100000
 BinderChangeType = &H200000
End Enum

F3_Doc_003_Ver4.0 Page 59 of 62

Note An exception to this rule is when encapsulating a Win32 API. It is common to
have internal definitions that come from a Win32 header. You can leave these with
the Win32 casing, which is usually all capital letters.

• Use an enum with the flags attribute only if the value can be completely
expressed as a set of bit flags. Do not use an enum for open sets (such as
the operating system version).

• Do not assume that enum arguments will be in the defined range. Perform

argument validation as illustrated in the following code example.

[C#]
public void SetColor (Color color)
{
 if (!Enum.IsDefined (typeof(Color), color)
 throw new ArgumentOutOfRangeException();
}

[VB.NET]
Public Sub SetColor(newColor As Color)
 If Not [Enum].IsDefined(GetType(Color), newColor) Then
 Throw New ArgumentOutOfRangeException()
 End If
End Sub

• Use an enum instead of static final constants.

• Use type Int32 as the underlying type of an enum unless either of the

following is true:

o The enum represents flags and there are currently more than 32
flags, or the enum might grow to many flags in the future.

o The type needs to be different from int for backward compatibility.

• Do not use a nonintegral enum type. Use only Byte, Int16, Int32, or

Int64.

• Do not define methods, properties, or events on an enum.

• Do not use an Enum suffix on enum types.

Nested Type Usage Guidelines

A nested type is a type defined within the scope of another type. Nested types are
very useful for encapsulating implementation details of a type, such as an
enumerator over a collection, because they can have access to private state.

Public nested types should be used rarely. Use them only in situations where both of
the following are true:

Confidential Focal3 Software Pvt Ltd

• The nested type logically belongs to the containing type.

F3_Doc_003_Ver4.0 Page 60 of 62

• The nested type is not used often, or at least not directly.

The following examples illustrates how to define types with and without nested
types:

[C#]
// With nested types.
ListBox.SelectedObjectCollection
// Without nested types.
ListBoxSelectedObjectCollection

// With nested types.
RichTextBox.ScrollBars
// Without nested types.
RichTextBoxScrollBars
Do not use nested types if the following are true:

• The type is used in many different methods in different classes. The FileMode
Enumeration is a good example of this kind of type.

• The type is commonly used in different APIs. The StringCollection Class is a

good example of this kind of type.

Attribute Usage Guidelines

The .NET Framework enables developers to invent new kinds of declarative
information, to specify declarative information for various program entities, and to
retrieve attribute information in a run-time environment. For example, a framework
might define a HelpAttribute attribute that can be placed on program elements such
as classes and methods to provide a mapping from program elements to their
documentation. New kinds of declarative information are defined through the
declaration of attribute classes, which might have positional and named parameters.
For more information about attributes, see Writing Custom Attributes.

The following rules outline the usage guidelines for attribute classes:

• Add the Attribute suffix to custom attribute classes, as shown in the following
example.

 [C#]
public class ObsoleteAttribute{}

[VB.NET]
Public Class ObsoleteAttribute{}

Confidential Focal3 Software Pvt Ltd

• Specify AttributeUsage on your attributes to define their usage precisely, as
shown in the following example.

[C#]
[AttributeUsage(AttributeTargets.All, Inherited = false, AllowMultiple = true)]
public class ObsoleteAttribute: Attribute {}

F3_Doc_003_Ver4.0 Page 61 of 62

[VB.NET]
<AttributeUsage(AttributeTargets.All, Inherited := False, AllowMultiple :=
True)> _

Public Class ObsoleteAttribute
 Inherits Attribute
 ' Insert code here.
End Class

• Seal attribute classes whenever possible, so that classes cannot be derived
from them.

• Use positional arguments for required parameters.

• Use named arguments for optional parameters.

• Do not name a parameter with both named and positional arguments.

• Provide a read-only property with the same name as each positional

argument, but change the case to differentiate between them.

Confidential Focal3 Software Pvt Ltd

• Provide a read/write property with the same name as each named argument,
but change the case to differentiate between them.
[C#]
public class NameAttribute: Attribute
{
 public NameAttribute (string username)
 {
 // Implement code here.
 }
 public string UserName
 {
 get
 {
 return UserName;
 }
 }
 public int Age
 {
 get
 {
 return Age;
 }
 set
 {
 Age = value;
 }
 }
 // Positional argument.
}

[VB.NET]

F3_Doc_003_Ver4.0 Page 62 of 62

Public Class NameAttribute
 Inherits Attribute

 Public Sub New(username As String)
 ' Implement code here.
 End Sub

 Public ReadOnly Property UserName() As String
 Get
 Return UserName
 End Get
 End Property

 Public Property Age() As Integer
 Get
 Return Age
 End Get
 Set
 Age = value
 End Set
 End Property
 ' Positional argument.
End Class

Setting Environment Options (VB.NET)

• Use Option Explicit.

• Use Option Strict.

Reference:

Design Guidelines for Class Library Developers in MSDN.NET.

Confidential Focal3 Software Pvt Ltd

ms-
help://MS.VSCC/MS.MSDNVS/cpgenref/html/cpconnetframeworkdesignguidelines.ht
m

	Table of Contents
	Scope
	Naming Guidelines
	Capitalization Styles
	Pascal case
	Camel case
	Uppercase

	Case Sensitivity
	Abbreviations
	Word Choice
	Avoiding Type Name Confusion
	Namespace Naming Guidelines
	Class Naming Guidelines
	Interface Naming Guidelines
	Attribute Naming Guidelines
	Enumeration Type Naming Guidelines
	Static Field Naming Guidelines
	Parameter Naming Guidelines
	Method Naming Guidelines
	Property Naming Guidelines
	Event Naming Guidelines

	Guidelines for Exposing Functionality to COM
	Error Raising and Handling Guidelines
	Array Usage Guidelines
	Arrays vs. Collections
	Using Indexed Properties in Collections
	Array Valued Properties
	Returning Empty Arrays

	Operator Overloading Usage Guidelines (C# Only)
	Guidelines for Implementing Equals and the Equality Operator
	Implementing the Equality Operator (==) on Value Types
	Implementing the Equality Operator (==) on Reference Types

	Guidelines for Casting Types
	Threading Design Guidelines
	Guidelines for Asynchronous Programming

	XML Documentation
	Example
	Documentation Tags for other .NET Languages
	Describe the assembly information in the file AssemblyInfo.c

	Class Member Usage Guidelines
	Property Usage Guidelines
	Property State Issues
	Raising Property-Changed Events
	Properties vs. Methods
	Read-Only and Write-Only Properties
	Indexed Property Usage
	Parameter Usage Guidelines
	Field Usage Guidelines
	Constructor Usage Guidelines
	Method Usage Guidelines
	Method Overloading Guidelines
	Methods With Variable Numbers of Arguments
	Event Usage Guidelines

	Type Usage Guidelines
	Base Class Usage Guidelines
	Base Classes vs. Interfaces
	Interfaces are appropriate in the following situations:
	Protected Methods and Constructors
	Sealed Class Usage Guidelines
	Delegate Usage Guidelines
	Event notifications
	Callback functions
	Value Type Usage Guidelines
	Struct Usage Guidelines
	Enum Usage Guidelines
	Nested Type Usage Guidelines
	Attribute Usage Guidelines

	Setting Environment Options (VB.NET)
	Reference:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

